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Steady and unsteady thee-dimensional flows with degenerate hodographs, not 
belonging to the class of simple waves, 

There the flow region ln the phase space 
have been studied in [ 1 to 33. 

corresponded in the hodo- 
graph space u,uous 

X,X,.Q t 
either to a certain surface - for the case of double 

waves - or to a certain three-dlmenslonal region - for the case of triple 
waves (u, are the components of the velocity vector). 

For polytroplc gas under the assumption of lsentroplc and potential char- 
acter of flows considered in [l to 33, systems of equations describing the 
corresponding classes of flow in the hodograph space were deduced, 

Below we investigate-flows behind three-dlmenslonal shock waves when it 
is assumed that the surface of discontinuity Is represented by a certain 
curve in the holograph apace, whilst the flow behind the shock wave belongs 
to the class of double waves. Rssentlally, we consider only shock (detona- 
tion) waves of constant intensity, since the flow behind the wave front is 
assumed laentropfc. For the system of equations describing the double waves 
along certain lines in the plane of the Independent components of velocity, 
a Cauchy problem Is formulated. The system of equations under consideration 
turns out to be elliptic behind the Sront of the shock waves and hyperbolic 
behind normal detonation waves. It appears that in the steady case behind 
the surface of a strong discontinuity the velocity of the sound as a func- 
tion of the velocity components Is the same a8 In the case of a conical self- 
similar flow. This gives the possibility of obtaining certain exact solu- 
tlona for steady three-dimensional flow .past certain bodies of special shape 
in the presence of shock fronts. 

Flows behind the surface of a strong discontinuity in the class of plane 
unsteady double waves have been studied also in [4 and 5].(*) 

1, The system of equations descrlblng unsteady three-dimensional double 

waves can be written down In the following form [ 2 and 31 

*) A.F. Sldorov, Nekotorye tochnye resheniia nestatslonal,noi mhogomernol 
gasovol dlnamlkl (Certain exact solutions of unsteady multi-dimensional gas 
dynamics). Dissertation, Institute of Hydrodynamics SO Akad.Nauk SSSR,I963. 
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The flow is assumed to be isentropic; the equation of state will be 

taken in the form 
p = a2p*, 8 = cB, a = const 

Here JJ is the pressure, y Is the adiabatic Index, p is the density 

and o Is khe sound velocity. 

The velocity components ut and us are assumed to be functionally inde- 

pendent. After solution of the system of equations (1.1) for the functions 

Y,A and X, the flow in the phase space x,xgx3t Is found from the rela- 

tions 8~ 

i$ =~i-l-Yi~~(i=l,% V=R(U~,U~)~+_Y(U~,ZL,) (1.5) 

Here V is andlstr~butlon' function, connected with the velocity poten- 
tial cp by the relation 

v= x .%kxk --cp 
k 

(1.6) 

Supdose that a three-dimensional shock wave, so far of arbitrary shape, 

propagates Into stationary uniform gas (u,= 0, f, = 1, 2, 3 and p = const) 

with a constant normal velocity D . From the Hugonlot conditions for this 

case it follows that the jumps ln entropy 5' In the modulus of the velocity 

1~1 and in the sound velocity o are constant along the surface of discon- 

tinuity L . Suppose that 

UI" + u: + '42 = A2 = const on L (l.7) 

Let us consider the following problem. Mhat degree of arbitrariness of 

solution pertains to the equations of ~drod~~i~s and what properties 

characterize the surface of discontinuity, If the shock wave corresponds to 

a certain curve 1 on the sphere (1.7), whilst the flow behind the wave 

front belongs to the class of potential double waves. At the same time we 

shall explore the question of formulation of problims for the system of 

equations corresponding to double waves. Let us assign the equation of the 

projection of the curve I on the u,ul plane ln the form 

u2 = f @I) (1.8) 

This can always be done without loss of generality. The curve 1 is 

then defined by Equations (1.7) and (1.8), whilst the motion of the surface 



of discontinuity is determined by the relations 

Ait + Xi = Xi + YIX3 (i = 1, 21 (1.9) 

followllng from (1.5)t where instead of n, we have substituted its expres- 

sion in terms of u!, according to (1.8) e 

Let us consider an srbitrary instant of tfme t = t, and ftid expressions 

for two linearly independent vectors 71 and TV lying in the tangent Plane 

to the surface of discontinuity, the expression for the normal n to the 

surface of discontinuity and the normal velocity of its motion D II 

From (1.9), assuming that the surface is given by the parametric expres- 

sions Ti = @i (a, 8) (s = ttI, -8 = z.& we obtain 

71 = @MY %S, ($7 T3 = (-- ‘iFI, - y2, 1) (1.10) 

z ia G 43 (&I$_ h2.f’) + (Xii+ Xi,/‘)- (yil-f- yi2f’) X2 (if-T: 1,2) (1.11) 

For the normal 0 , since the gas is at rest in front of the shock wave, 

we have 

n = & WI, u2, w fa.Eq 

Finally, by writing Equations (1.9) In the form 

F$ (%l x2, x3, 4 4 = 0 (i = 1, Q* 

we can find the normal velocity D from the relation 

(1.13) 

The Nugonlot conditions together with the conditions 

n-9 = 0 ii = i, 2) (5.14) 

and Equation (1.13), where p = const the same as in the Eugoniot conditions, 

give all the relations which must be fulfilled on the surface of discontinu- 

ity for the given cam?. Let us proceed to their analysis. Conditions (1.14) 

give 
%I% + %s% = 0, Y - u,Yx - r$Y, = 0 (1.15) 

Let us substitute in the first of these equations Gxpressions (1,lC) for 

T,, ; then, makIng use of the fact that f, and .Q are arbitrary, we find 

that the equation under conside:atlon Is equivalent to the three equations 

With the help of (X,15), the relation (1.13) is easily reduced to the form 
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(l.lT) 

IntWating eWations (1.16) along us= J(Q,), we obtain the integrals 

Y = ulY, + u,Y’,+ K,, A = ulR,+ u2R, + K,, X = ulX,-k u2X, + K, 
(Ki = const) (1.18) 

Accordingly, from equations (1.3), (1.71, (1.17) and (1.18) we obtain on 

the curve u2= y(u, ) the following initial data for Cauchy’s problem: 

for the function y 

ul” + f” + ‘P = A2, Y = ~~‘4~ +- u~UF~, K, = 0 (1.19) 

for the function 11 

+, + ~24 = rf: DA, K, = B2 + DA 

A = B2 = con&, B2 = x0 + V2 A3 (1.20) 

For the function X we have only one equation (1.18) and consequently 

have available in its determination a unifunctional degree of arbitrariness. 

It follows from Formula (1.9) that the constant & in Equation (1.18) for 

X is Immaterial and it may be set equal to zero. 

Equations (1.9) may be put in parametric form 
(1.21) 

X = K (s) + VP(S), X = (% x2, %I (8 and u are parameters} 

K (s) = (X, -I- &,A,, X, + t,&, 01, p (4 = (- YI, - Yz, 1) (1.22) 

From (1.21) it follows that the surface of discontinuity under consider- 

ation is a ruled surface. We shall show that It Is a developable surface. 

Setting down the condition for developability, we shall have 

-Y1 -Y’z 1 

K’PP’ = - (Yl13_ Yraf’) - p?21+ Y,f’) 0 

x11 + XlZf’ + to (All’$~Al2f’) x31 + Xd + to (h -!- M’) 0 

by virtue of condition (1.16), i.e. the surface of discontinuity 

developable, 

=0 (1.23) 

1s in fact 

Let us consider the fixed instant of time t * 0 (this can always be 

achieved by a displacement in respect to time) and the curve obtained as 

the section of the surface of discontinuity by the plane x3= 0 .From (1.9) 

It follows that the equations of this curve In the 3,~~ plane are 

Zi = Xi (i=P, 2) (1.24) 

where U&l’ JG, 1 * Accordingly, the assignment on the curve (1.8) of a 

second functional dependence for the function X In the form #(XI, X,) =O 

corresponds to assignment of a certain director curve +(x L, x,)=0 in the 

x,rD plane for the developable surface under consideration. In this con- 
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nectlon the assignment of the dependence (1.8) determines the position of 

the generators of this surf%ce, l.e. altogether in tbe determination of the 
surface of discontinuity we have available the degree of arbitrariness in 

two functions of a single Independent variable. 

From the foregoing we draw the following conclusion. 

Theorem X.3. s If in hodogrsph space a certain curve corresponds 

to the surface of a strong discontinuity, and the flow behind the dlscont_- 

nuity belangs to the class of potential double w%ves, then this surface isa 

developable surface at any instant of time t = tO and Cauchy’s problem for 

the system (1.1) can be 

space when t = t, L 

formulated for any surface developable in X,X,X, 

We notice that after 

at a certain instant of 

continuity at any other 

(1.9), in which A,, x, 

the curve uB= f(ut ) . 

assigning the shape of the surface of discontinuity 

time t * t, , the position of the surface of.dls- 

instant of time t Is determined immediately by 

and YS are found from the Cauchy initial data on 

2, We note that the coefficients of the equations for the functions Y, 

n and X are ldentlcsl and the type of system (1.1) Is determined by the 

sign of Expression 
R = R,; - RI,R,, (2.1) 

When A> 0) the system of equcttinns (1.1) 3s of hyperbolic type when 

R i: 0 it is elliptic. 

Makine; use of (I.-Z?), let us write the expression for I) in the form 

R = e {(A, - YYy, - ug -+ (A, - Y Yn- u,p”k (2.2) 
I_ lYI (A, - YY*--u,) - Y2 (A, - YYV, - u&l2 - 8 (1 + Yx2 -f- Y$)f) 

Let us find the value of A on the curve up= f(ul 1: From Forrmilas (1.20) 

for A, and ha we obtain 

A (L= AD) (2.3) 

(the ca3e L =-Al) corresponds to the propag%tlon of a shock w%ve into % 

certain field changing in 8 special m%nner and it will nut be considered in 

the present paper). For Y,. and y1 from (1.14) we have 

Y1= - f’Ul% + f’P -I- UYf ya + u1a + wff' 
Y fj - f’us) ’ 

Y’2= ,, 
Y (f - f’ud (2,4) 

where Y Is determined by the relation (1.7). 

Substituting the expressions for the derivative% from (2.3) and (2.4) and 

performing the necessary transform%tions, we fln%lly obtain for A 

(265) 
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We notice that the case f -f’u,= 0 1s of no Interest and leads to the 

relation u, - 0 . In fact, setting ua= pu, (p = const) we obtain from 

(1.19) 

Ul + P2U1 + y (Y1 + Y,P) = 0, y = Ul (‘ul + PY,) 
Hence 

ul(l + p2 + (WI + YzP)~) = 0, I.e. ul=O 

The sign of R coincides with the sign of Expression 

T = (L - A2)2 - &I2 

Recalling the meaning of the notation Introduced, let us write P in the 

T=Ju~~(D--IuI - 4 (D - 1 u 1 + c) (2.6) 
At the front of an ordinary shock wave, propagating In undisturbed gas, 

the Inequalities 
IUI -t c>o D > I4 (2.7) 

are fulfilled (disturbances behind the front overtake the shock wave); con- 

sequently, R < 0 , and the system of equations (1.1) In this case Is of 

elliptic type. 

If the surface of discontinuity L Is the front of a normal detonation, 

at which the Chapman-Jouguet condition 

IllI +c=-D (2.8) 

1~ fulfilled, then from (2.6) It follows that T = A = 0 , I.e. the curve 

ua= y(u,) Is a curve Indicating parabolic character of the system (l.l), 

whilst to determine the type of the system (1.1) behind the detonation front 

a supplementary Investigation 1s needed. 

We notice that the curve ug= y(u,) 1s not a characteristic of the system 

(1.1). In fact, using the relations (2.3) and (2.4) we have 

R,,du,2 $- 2R,,du,du, + R,, &L,~ = dul” [R,, + 2R,,f’ + R2J2) = 

= du,20 11 + f’2 + (Y, + YJ’)21 > 0 (for UI # const) (2.9) 

Let us consider the arbitrary point M(u,, ua, Y) lying on the curve 1 . 
The curve 1 Is the line of Intersection of the sphere (1.7) and the surface 

u3 = Y(u 1, uz), into which the region of flow behind the surface of dlscon- 

tinulty Is transformed In the hodograph space. Behind the front of a normal 

detonation wave the pressure and the modulus of the velocity decrease, there- 

fore It Is sufficient to consider the part of the surface us= Ycu,, u,) 

lying Inside the sphere (1.7), and study the sign of R Inside this sphere. 

We shall show .?lrst of all that at the point H the surface (1.4) cannot 

touch the sphere (1.7). Vectors directed along the normals to the surface 

(1.4) and the sphere (1.7) at the point M can be written, respectively, In 

the form 
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n+ = (-- Yy,, - Y,, I), n8 = (uIt up, Y) (2.10) 

In the case of tangency the vectors n+ and n, are proportional 

n+ = cn,, c+o, or - Y, = cul, -- Yz -= CUl, 1 = CY (2.11) 

Comparing (2.11) and (1.19), we have at the point M 

Y (1 ml- Y; f- Y2’) = 0 (2.12) 

A contradiction is obtained, whence it follows that the surfaces cannot 

be tangential at the point M . Suppose that Equations 

Ul == Ul (9, u2 == u2 (k), Y = ‘I’ (ul (E), u2 (EJ) (2.13) 

determine an arbitrary curve u , lying on the surface (1.4), such tnat with 

increase in the value of the parameter < the curve passes through the point 

M , approaching the surface of the sphere (1.7) from within. 

The vector directed along the tangent to the curve r~ at the point M 

will be written in the form Vc= (7.4 ;, ui, JI'), where primes denote dlfferen- 

tiation with respect to 5 and the point M corresponds to the value of the 
parameter 5 . 

Since the surfaces (1.4) and (1.7) do not touch, then at the point M 

n,.Tc>O (2.14) 

Along the curve Q we have H = R (ILL, u2, 'r) = R (j). We shall show 

that at the point M when condition (2.14) is fulfilled the following lne- 

quality Is valid: 
dR I dE < 0 (2.15) 

Accordingly, since the point M is arbitrary, we have established hyper- 

bolic character of the system of equations (1.1) In the neighborhood of the 

curve 1 on the surface (1.4). The inequality (2.14) in expanded form can 

be written 
UIUl' + usus' -i YY > 0 (Y' = YIUl' -I- YlZCZ’) (2.16) 

with the aid of the relation (2.4) this can be reduced to the form 

$_I%~>0 (2.17) 

The sign of I? coincides with the sign of the expression in braces in 

(2.2), which can be put in the form 

p = x2 (e,z + f3,z) -t x2 (8,Y, - f3,Y,)2 - I3 (1 -I- Yy12 -;- Yu’z”) (2.18) 

For 8, and g2 along the curve us= y(u,) from (2.3), (1.3) and (1.7) we 

obtain 

Taking the total differential of p 

(Ip=Pu' 
dS 12 

fj =_1.. L-A2 
2 

x f - j’u, 
(2.19) 

with respect to < we have 

f P&’ (2.20) 



577 

Pi = 29 (eleIi + e2e2i) + 2x2 (e,Y1 - e,Y,) (eziYy, j e,YIi - 

- eIiYy, - e,Y,d - ei (1 + Yyla + Y,Z) - 28 (I& -t ly,Y,i) 

Reducing the coefficients Rlr to the form 

Kil, _ Q (- l)it” ZI,,U,, 
8 

,(n # i, II #k; nz, II, i, k = 1, 2) 

(1 + 1’:) + (fl’ + %)*I 

(2.21) 

(i = 1, 2) 

(2.22) 

with the aid of (2.3), (2.4) and (2.19) and making 

lng from (1.1) and (1.16) alow, up= /(u,), namely 

Ulhli + uz&i = U,Yy,i + UzY,i = 0 

by virtue of (2.7) and (2.17) we obtain 

use of the relation result- 

(i = 1, 2) (2.23) 

Since the signs of dP/dg and aR/dS colclde, we have 

lowing theorem. 

(2.24) 

proved the fol- 

T h e o r e m 2.1 . If behind the front of a three-dimensional curvl- 

linear normal detonation wave the gas flow belongs to the class of potential 

double waves, and a certain fixed curve in the hodograph space corresponds 

to the surface of the front, then for the system of equations describing 

double waves this curve Is a line Indicating Its parabolic character, whilst 

behind the surface of the detonation front this system of equations Is alw&ys 

of hyperbolic type. 

The Cauchy problem for the system (l.l), formulated along the curve 

u,=JG, ) f In the given case Is a proper one. 

3. Let us consider the case of steady flow In the class of potential 

double waves, when the shape of the surface of the strong discontinuity 

remains unchanged. The system describing steady three-dimensional double 

waves derived In [l] Is obtained by setting In (1.1) 

Then the equation 

(1.5) take the form 

for -A In the system (1.1) can be dropped. Equations 

and In the system of 

xi .zz: xi + ‘I’i (zs - Kt) (3.2) 

coordinates X, , xa, x3’ we shall have steady motion, 

If we set x3’ = x3- Kt and In place of u3 introduce the velocity u3’=u3 -K 

From the Cauchy data (1.19) and (1.20) for I# and A on the curve (1.8) 

we obtain 
Y == L I K = const (3.3) 

and, consequently, the dependence (1.8) has the form 
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l-41 2_ j- s.42” = A2 - L2 / iy2 = a2 = const (3.4) 

(we stall tm.Wme that X z II). Setting &v$ r , the solution of t&e 
@JEW problem for the function y will be sought in the form y = y(r) 

From the first equation of the system (1.1) we obtain for y the ~~dinary 

equation 
O\f’“r -: ‘fp’0 (1 i_ Yr’Z) - ?F’ (r -t_ yy, - h-y')2 -_ 0 (3.5) 
0 2zz -& (kY -t_ &f - .q - f) ) M=B2---C (3.6) 

hxm.bns b.24) for Ewation (3.5) are given by the Cauchy initial data 

Y (a) = L I k, YP (a) =L/Ka (3.7) 

AcCordingfy, after specifying the valu@ of the parameter x , the magni- 

tude of which characterizes toe inclination of the straight line generators 

of the surrace of the strong discontinuity to the axis of x3’, the function 

Y is found as the solution of the Cauchy problem (3.7) for Equation (3.5) 
and is completely determined. In the equation for the function X and in 

the Cauchy initial data fcr it (1.18) and (1.25) let Us pass to polar coordl- 

nates u1 = r Cog tp, up = I” sin (p; We then obtain 

r2x,, 4 (1 - S‘ (r)) (X,, + i*X,) = Q (3.8) 

X-rX,=O, ~~X~~*~~-X~~, X~si~~+X~~~) = 0 for P I a 
where (3.9) 

s @) = (P -#- YY'--KY')Z-- @Y'Z 

B 
(3.10) 

and the function if is arbitrary (when ~3 ‘= 0 can arbitrary specify the 

shape of the director curve), 

In the case of an ordinary shock wave s(a)< 2, BqUatlQn (3.8) in the 

neighborhood of the curve r = a 5s of elliptic type and, generally speaking, 

the Cauehy problem formulated in (3.9) is improper in the classical sense, 

The given sitUatlon is analogous to the situation arising in the problem Of 

steady flow with shock waves past Plane and aXiWnmetr%C bodies, when for a 

given shape of shock wave the contour of the streamlined body 1s sought. 

Let Us determine the shape of the streamlined body in the case Under con- 

sideratim. Let the surface of the body correspond in the uI, uz Plane to 

the curve 
ue = G(Lll) (3.11) 

and the relations (3.2) are the equations of this surface under the oondi- 

tions (3.11). me condition for absence of flow of gas through the surface 

has the form 
n,*u ---Do (3.12) 

where na &j the normal to the surfsce and Do is the normal velocity of 

motion of the streamllned surface. In exactly the same way as in Section 1, 

we fknd that condition (3.12) is equivalent to the two relations 



face Is the plane !u, -u,o'= 0), and also the case Y’= 0 

; 

corresponding 

to a cylindrical surface, we conclude that the equation (‘3.5 must be lnte- 

grated, starting with P - a up to such r = d that e'(d) - 0 . From 

(3.2) it follows that the streamlined surface, just like the surface of the 

strong discontinuity, is a ruled surface, Condltlons (3.14) can be written 

down in the form 
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(Yll + Yl2U’) 02 - (Y,, + y22q 01 = 0 (3.13) 

(XI, + XI@') 0, - (X21 + La') 01 = 0 (3.14) 

From (3.13), since 8 - 6(r) and Y - y(r) , we obtain the result 

fj’y’F-2 (U2 ‘- @) = 0 (3.15) 

Excluding from consideration the trivial case when the streamlined sur- 

8’F-’ [(xl1 - &,U’) U2 - (x2, + x2, U') 2411 = 0 (3.16) 

and when e'(d) = 0 It Is Indeed satisfied, whilst the dependence (3.11) 

has, accordingly, the form u,' + uSa= const . 

We note that when ?( f 0 we obtain the solution of the problem of steady 

flow past a circular cone. Moreover, If 0 Is the angle Included by the 

cone corresponding to the shock wave, then sin h = IJ X 

+ 

and all the 

required quantities depend only upon the ar&ment x,~+ x,'/ 5 (see C73). 
The angle 8 Included by the strearhllned cone Is found afteI; CalCUlatlOn 

of the solution of the Cauchy problem (3.7) from Equation (3.5) In the lnter- 

val [a, d] d z= a (the shape of the shock wave Is assumed tiown) from the 

relatlon tan 48 = Y'(d). 

Accordingly, the function Y for the solution of problems of steady flow 

past three-dimensional bodies In the class of potential double waves can be 

taken from the corresponding self-similar problem of flow of a uniform super- 

sonic stream past a circular cone. In the determination of the ndlstrlbu- 

tlon" function X , however, there remains the degree of arbitrariness noted 

above. 

From the properties of steady self-similar flow past a circular cone It 

follows that q"Y"< 0 h w en FE [a, d]. Hence, representing 1 - 8 with 

the aid of (3.5) and (3.10) In the form 

1 _.y=_-_r/Y' (3.17) 

we conclude that 1 -s > 0 and Equation (3.8) In the whole annulus ?-= 0, 
r= d Is of elliptic type. 

Let us Investigate the slngularltles which can arise In passing from the 

hodograph space to physical space. For this purpose, after transforming to 
the polar coordinates r and cp In relations (3.2),'detemng the flow 

In the x1, xa, x3’ space, let us calculate the Jacobian l=a(r,,rs)/a(r,(P) 

for fixed x3'. 
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MakinS use of Equation (3.8) we obtain r’or I the expression 

(3.18) 

From the inequality Y'Y"< 0 we conclude that 1~ 0 and 1 vanishes 

only under conditions 

X,, - \I(" Xa' = 0, x, -- r-'X, = 0 (3.19) 

if the second equation (3.14) corresponds to certain curves P = r(rp) in 

the annulus under consideration, then the relations (3.2) and (3.19) deter- 

mine, generally speaking, certain limit lines which can, In this way, appear 

in the flows under study. 

Specifyfng initial conditions (3.9) not when x,' = 0 ) as has happened 

until now, but with sufficiently large values of 1x3'1 = N f from Expression 

(3.18) fhr I and from the fact that for flow past a circular cone 

I = Y’Y”x,‘, 

we find that the region of definition of the so~utlon in physical space in 

one of the directions along the x~'-~x%s is unbounded. 

The equations of the director curve in this case, if the form of the con- 

ditions in (3.9) is retained, will have the form 

xl = X, cos cp - X,r-* sin cp - ‘P/N cos (s, 

xS = x, sin Cp f &F-’ COS 9 - yliv 5in 'J) 
for f= a (3.20) 

i.e. the shape of the section of the shock wave is close to a circle, and 

the flow Is completely defined in the whole region between the shock wave 

and the streamlined body for ) ~~‘1 > N. 

The simplest examples af flOW ot the type under consideration are easily 

abtained in the following way. I;i the coefficients of Equation (S-8) the 

variable s does not appear, and this permits separation of the variables. 

Setting X-z F (r) v(CP), we obtain for F' and v the equations 

r"J7' ./. (1 _- ,v) (7-F‘ m+ rr;') 'I- 0, (3.21) 

Tg” - ho = 0: x -= const (3.22) 

&vine; taken, for example, the solution of Equation (3.8) in the form 

X - cos 2cpFz fr), where F;z is determined from Equation (3.21) whenh = - fi 

and &'(a) - F(U) = 0, we obtain surfaces of the shock wave and the 

stl,eamlj.ned body which are symmetrSe with respect to the planes x,= 0 and 

xz= 0 , given by Equations 

51 = .F,' cos !&p COS cp + 2F,5i" 21prsigJ V - 3" co.'; 'PXaF for !' =ir,_r = d 

sin 2q7 cm cp 
(3.23) 

2% = Fl’ cos 2~ sin (p - 2F, ,’ - ‘I” sin u”x3’ for r=tu7 r=d 
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In the case of specification of Initial data when x,'= 0 it is necessary 

In each actual solution to verify that X,, and Xre, - rWIXm do not vanish. 

simultaneously. If both these expressions do not vanish slmultaneously,then 

In the neighborhood of the plane x3'= 0 it Is indeed possible to pass 

from the hodograph space to physical space. 

Note 1 
Equation (3.8) 

Fourier's method of solution of the Cauchy problem for 
can be effectively applied for construction of the flow behind 

normal detonation waves when Equation (3.8) Is of hyperbolic type. 

Note 2. When 1~~'l-m for any Initial data the shape of the 
shock wave and the streamlined body approximates to the shape of a circular 
cone, and the corresponding flow tends to flow past a circular cone. 

Note 3. The foregoing considerations allow us to formulate the 
problem of flow past a body, the surface of which is the envelope of a family 
of cones with vertices on a certain curve In the plane x3'= const and such 
that all the generators of the cones have one and the same anzle of inclina- 
tion to the &'-axis. Moreover, apparently, for certain special curves In 
the plane x1'= const we can ootain 'complete" flow, i.e. without limiting 
curves. The-solution of this problem is connected with finding the solution 
of the Cauchy problem for the elliptic equation (3.8). Questions of the 
existence of such solutions are not considered In the present paper. We 
notice that, instead of the Cauchy problem for Equation (3.8), we can solve 
the nonlinear mixed problem In a nonsim 1 
(a) (3. ) when 

connected region with condition 
F = a and condition (by f3.9) when P = d (i.e. in the 

annulus , when for x3'= const we have specified the shape of the section, 
not of the shock wave, but of the streamlined body. 
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