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Steady and unsteady three-dimensional flows with degenerate hodographs, not
belonging to the class of simple waves, have been studied in [1 to .

There the flow region in the phase space x,xyx;¢ corresponded in the hodo-
graph space y,uzuy eilther to a certaln surface — for the case of double
waves — or to a certaln three-dimensional reglon — for the case of triple
waves (u‘ are the components of the veloclty vector).

For polytropic gas under the assumptlon of isentropic and potential char-
acter of flows considered in [1 to 3], systems of equations describing the
corresponding classes of flow in the hodograph space were deduced.

Below we investigate flows behind three-dimensional shock waves when it
is assumed that the surface of discontinuity 1s represented by a certain
curve in the hodograph space, whilst the flow behlnd the shock wave belongs
to the class of double waves. Essentlally, we conslder only shock (detona-
tion) waves of constant intensity, since the flow behind the wave front is
assumed lsentropic. For the system of equations describing the double waves
along certain lines in the plane of the independent components of veloclty,
& Ceuchy problem 1s formulated. The system of equations under consideration
turns out to be elliptic behind the front of the shock waves and hyperbolilc
behind normal detonation waves, It appears that in the steady case behind
the surface of a strong discontinuity the velocity of the sound as a func-
tion of the velocity components is the same as in the case of a conical self-
similar flow. Thils gives the possibility of obtalning certain exact solu-
tions for steady three~dimensional flow past certaln bodies of special shape
in the presence of shock fronts.

Plows behind the surface of a strong discontinulty in the class of plane
unsteady double waves have been studled also in [4 and 5].(%)

1, The system of equatlons describing unsteady three-dimensional double
waves can be written down in the followlng form [2 and 3]

*) A.F. Sidorov, Nekotorye tochnye reshenlila nestatslonainol mnogomernol
gazovol dinamiki (Certain exact solutions of unsteady multi-dimenslonal gas
dynamics)., Dissertation, Institute of Hydrodynamics SO Akad.Nauk SSSR,1963.
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Ry ¥y — 2R, ¥y + Rpp¥Wyy = 0
Ry — 2R A, + Ryl =0 (1.1
Ry Xga — 2R Xy + RooXyr = 0

Here
Ry = — Ay — YV — w) (A — Y% — ue) + 8 (8 + ¥i¥y) (1.2)
(i, k=1,2, 8, =0 for ik, §;=1)
Y A X Y, 0A 90X
‘Y’kﬂauau A auau K= ou.du,’ ¥ = ~ ou;’ As —-E’Xiw du,
! 1

b= [A— @+t + ), x=g (1.3)
uy = ¥ (uy, uy) (1.4)

The flow 1s assumed to be isentropic; the equation of state will be
taken in the form
p = a¥¥, 6 = %, a = const
Here p 1is the pressure, vy 18 the adiabatic index, p 18 the density
and ¢ 18 the sound velocity.

The velocity components 1y, and y, are assumed to be functionally inde-
pendent, After solution of the system of equations (1,1) for the functions
¥, A and X , the flow iIn the phase space x,x;x3¢ 1s found from the rela-

tions oy . .
gu = & T Wiz (=12, V= A (uy, u) t + X (u, uy) (1.5)
Here V¥ 1s a "distribution” function, connected with the velocity poten-

tial g by the relation T = % Uk — @ (1.6)

Suppose that a three~dimensional shock wave, so far of arbitrary shape,
propagates into stationary uniform gas (u,s 0, 1 =1, 2, 3 and p = const)
with a constant normal velocity 2 . From the Hugoniot conditions for this
case it follows that the jumps in entropy § 1in the modulus of the velocity
tul and in the sound velocity o are constent along the surface of discon-
tinuity 1 . Suppose that

Ul -+ u? 4 ¥ = A% =const onlL (1.7)

Let us consider the following problem. What degree of arbitrariness of
solution pertains to the equations of hydrodynamics and what properties
characterize the surface of discontinulty, if the shock wave corresponds to
a certailn curve ] on the sphere (1.7), whilst the flow behind the wave
front belongs to the class of potential double waves, At the same time we
shall explore the question of formulation of problems for the system of
equations corresponding to double waves. Let us assign the equation of the
projection of the curve ] on the u;u, plane in the form

Uy = f(uy) (1.8)
This can always be done without loas of generality. The curve 7 1s
then defined by Equations (1.7) and (1.8), whilst the motion of the surface
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of discontinulty is determined by the relations

At + X =z + Yizg (i=1,2) (1.9

following from (I.5), where instead of u, we have substituted 1ts expres-
sion in terms of u,, according to (1.8).

Let us consider an srbltrary instant of time ¢ = ¢, and find expressions
for two linearly independent vectors 1, and 1, 1lying in the tangent plane
to the surface of discontinuity, the expresslon for the normal n to the
surface of discontinulity and the normal velocity of its motion D .

From {1.9), assuming that the surface is given by the parametrlc eXpres-
sions z; = M; (s, ») (s = uy, v = &), we obtain
Ty = (rls’ Toss 0)7 Ty = (— qfh o ‘y% i) (1'10)

Ty = to (Au‘\L“ Ai?,f') + (Xi1“+“‘ Xizf,)—' (q!i1+ Wizf/) T3 (i==1,2) (1-“)

For the normal 81 , since the gas 1s at rest in front of the shock wave,
we have
n= -{% (s, s, ) (1.12)
Finally, by writing Equations (1.9) in the form
Fi(zy, 25y 24,2, 8) =0 (i = 1, 2),

we can find the normal veloeity 2 from the relation

{8 (F1, Fy 8 (Fy, F)\*¥h
D=3 [;( 3 (5 9) ) ] (1.13)
The Hugoniot conditions together with the conditions
n-t =0 i=1,2) (1.14)

and Equation {1.13), where p = const the same as in the Hugoniot conditions,
give all the relations which must be fulfilled on the surface of discontinu-
ity for the given case, Let us proceed to thelir analysis. Conditlons (1.14)

glve
tlsul ‘“}" Tzsuz = 0, q’ _ ulqri o u2‘¥3 == O (1;15)

Let us substitute in the first of these equatlons Expressions {1.10} for
T4, 5 then, making use of the fact that ¢, and x, are arblirary, we find
that the equation under conside:ation 1s equivalent to the three equations

up (W + ¥iof) + g (Vg + ¥auf ) =0
Uy (A + Apf) + ua (A + Apf’) =0 (1.16)
Uy (Xyy + Xpof )+ 4 Xy + Xpof ) =0

valid along the curve yug= r(u,) .

With the help of (1.15), the relation (1.13) is easily reduced to the form
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D= P Ay uy + Asua |
Vu® - ug? + 92
Integrating equations (1.16) along u,= y(us), we obtain the integrals

(1.17)

¥ = u, ¥, + u,¥,+ Ky, A= uA+ uA, + Ky, X =X+ uX, + K,
(K; = const) (1.18)

Accordingly, from equations (1.3), (1.7), (1.17) and {1.18) we obtain on
the curve u,= f(u,) the following initial data for Cauchy's problem:

for the function W
ut 4 V=42 ¥ =u¥ +u¥, K, =0 (1.19)
for the function A
wA, + uA, = +DA, K,=B*7 DA
A = B? = const, B® =« + Y/, A (1.20)

For the function X we have only one equation (1.18) and consequently
have available in its determination a unifunctional degree of arbitrariness.
It follows from Formula (1.9) that the constant ¥, in Equation (1.18) for
X 1is immaterial and 1t may be set equal to zero.

Equatlons (1.9) may be put in parametric form

(1.21)
X = K (s) + oP(s), X = (24, %3, Z3) (s and v are parameters)

K (s) = (X -+ 50, Xs 4 A, 0), P()=(—V¥, —V¥,1) (1.22)
From (1.21) it follows that the surface of discontinuity under consider-

ation 1s a ruled surface. We shall show that it is a developable surface.
Setting down the conditlon for developability, we shall have

p— — Y, 1
KIPPI — ___(q,n + ‘Fm]") — (1[:21 + ‘me’) 0 :_—_0 (‘1.23)
X + Xuaf 4 to (Air+Aref) X 4 Xoof -+ 2o (A21 + Anaf’) 0

by virtue of condition (1.16), i.e. the surface of discontinuity is in fact
developable,.

Let us consider the fixed instant of time ¢ = O {this can always be
achleved by a dilsplacement in respect to time) and the curve obtained as
the sectlion of the surface of discontinuity by the plane x,= O , From (1.9)
it follows that the equations of this curve in the x,x, plane are

=X (i=1,2) (1.29)
where ug= 7{u,) . Accordingly, the assignment on the curve (1.8) of a
second functional dependence for the function X in the form &(X,, X,;) =0
corresponds to assignment of a certain director curve Q(x, R x,) =0 1in the
x,x; Plane for the developable surface under consideration. In this con-
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nection the assignment of the dependence {1.8) determines the position of
the generators of this surface, 1l.e. 8ltogether in the determination of the
surface of discontinulty we have avallable the degree of arbitrariness in

two funetions of
LWe luneLions ¢l

W

From the foregoing we draw the following conclusion.

Theoren 1.1 . If in hodograph space & certain curve corresponds
to the surface of & strong discontinuity, and the flow behind the discont -
nuity belongs to the class of potential double waves, then this surface isa
developable surface at any instant »f time ¢ = t, and Cauchy's problem for
the system (1.1) can be formulated for any surface developable in x, x,s
space when ¢ = ¢,.

We notice that after assigning the shape of the surface of discontinuilty
at a certain instant of time ¢ = ¢, , the position of the surface of.dis-
continulty at any other instant of time ¢ 1s determined immediately by
{1.9), in which A, X, and ¥, are found from the Cauchy initial date on
the curve yu,= flu, ).

2. We note that the coefficlents of the equations for the functions ¥,
A and X are ildentical and the type of system (1.,1) is determined by the
sign of Expression
R = 1?15 — }?11}222 (2-1)
wnen R > O, the system of equations (1.1} is of hyperbolic type when
R < Q it is elliptic.

Making use of (1.2), let us write the expression for 5 in the form

R=0{A —¥Y, — u) + (A, — ¥ W up)?+ (2.2)
+ W (A — YW—ug) — Wy (A, — VW — uy) PP — 6 (1 + ¥° + W]}

Let us f£ind the value of F on the curve uyw= sy, ). From Formuias {1.20)
for A, snd A, we obtailn
{the case 7 = — 4p corresponds to the propagation of s shock wave into a
certain field changing ih & speclal manner and it will not be consldered in
the present paper). For ¥, and Y, from (1.19) we have

- 92+ 712 4 usf Pt wtwff )
Vi= =m0 DT I—Tw (24)

where ¥ 4is determined by the relation (1.7}.

Substituting the expressions for the derlivatives from {2.3) and (2.%) and
performing the necessary transformations, we finally obtain for &

AU )+ IR ane _ gae 5
R = s (L — A% — 64?] (2.5)
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We notice that the case f — f'y,= 0 1s of no interest and leads to the
relation u,= 0 ., In fact, setting u,= pu, (p = const) we obtain from
(1.19)

uy + puy + ¥ (¥, + ¥pp) = 0, ¥ = uy (¥, + p¥y)
Hence

u (1 +pPP+ ¥+ ) =0, 1.e. uu=0
The sign of AR coincides with the sign of Expression
T = (L — A%? — 042

Recalling the meaning of the notatlon introduced, let us write 7 1n the

form 2
T=u|>D—Ju|—c) (D —|u|+o (2.6)
At the front of an ordlnary shock wave, propagating in undisturbed gas,

the inequalities
lu|+¢>D  D>|u 2.7)

are fulfilled (disturbances behind the front overtake the shock wave); con-
sequently, R < O, and the system of equations (1.1) in this case is of
elliptic type.

If the surface of discontinuity 7 1s the front of a normal detonation,
at which the Chapman-Jouguet condition

luj +¢=D (2.8)

i3 fulfilled, then from (2.6) 1t follows that T =R = 0 , i.e. the curve
uz= f{u,) 1s a curve indicating parabolic character of the system (1.1),
whilst to determine the type of the system (1.1) behind the detonation front
a2 supplementary investigation is needed.

We notice that the curve u,= f(u,) 1s not a characteristic of the system
(1.1). 1In fact, using the relations (2.3) and (2.4) we have

R, du? 4 2R ,du,duy, + R,y duy? = duy® [Ryy + 2R ,f" + Ryf?) =
=du® [1 + f2 + (¥, + Pof )?)1 >0 (for u1==const) 2.9

Let us conslder the arbitrary point M(UL: Ug, ¥) lying on the curve ] .
The curve 7 1s the line of intersection of the sphere (1.7) and the surface
us= ¥(u,, u,), into which the region of flow behind the surface of discon-
tinuity is transformed in the hodograph space. Behind the front of a normal
detonation wave the pressure and the modulus of the velocity decrease, there-
fore 1t 1is sufficlent to consider the part of the surface wug= Y(u,, uz)
lying inside the sphere (1.7), and study the sign of A inside this sphere.

We shall show first of all that at the point ¥ the surface (1.4) cannot
touch the sphere (1.7). Vectors directed along the normals to the surface
(1.4) and the sphere (1.7) at the point ¥ can be written, respectively, in
the form
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ny = (— ¥, — ¥, 1), ng = (i, u,, ¥) (2.10)
In the case of tangency the vectors ny and ng; are proportional
n,=cng, c¢=0, oo — ¥, = cuy, — ¥, = cu,, 1 =c¥ (2.11)
Comparing (2.11) and (1.19), we have at the point y
V(YR ) =0 (2.12)

A contradiction 1s obtained, whence 1t follows that the surfaces cannot
be tangentlal at the point u . Suppose that Equations

o= (8, w e uy(5), W= W (uy (B), uy (B) (2.13)

determine an arbltrary curve ¢ , lying on the surface (1.4), such that with
increase in the value of the parameter ¢ the curve passes through the point
M , approaching the surface of the sphere (1.7) from within.

The vector directed along the tangent to the curve ¢ at the point y
will be written in the form 1M, = (u/, wi, ¢'), where primes denote differen-
tiation with respect toc £ and the point ¥y corresponds to the value of the

parameter €

Since the surfaces (1.4) and (1.7) do not touch, then at the point §

ng-t; >0 (2.14)

Along the curve g we have R = R (uy, u,, V) = R (§). We shall show

that at the polnt » when condition (2.14%) is fulfilled the following ine-
quality 1s valid:

dR/ dt <0 (2.15)

Accordingly, since the polnt ¥ 1s arbltrary, we have established hyper-
bolic character of the system of equations (1.1) in the nelghborhood of the
curve ] on the surface (1.4). The inequality (2.14%} in expanded form can

be written

Uyl + Uglty’ + YW >0 (¥ = V' - Vi) (2.16)

With the ald of the relation (2.4) this can be reduced to the form
el o 2.17
= fu = (2.17)

The sign of A coincldes with the sign of the expression in braces in
(2.2), which can be put in the form

P o= (82 + 02 - %2 (0,%, — 0%, —0 (14 W2 %2 (218

For @, and @, along the curve u,= s(u,) from (2.3), (1.3) and (1.7) we

obtain
0 lj,L-—A2 0 1 L-— A2 P1%
_— T gt = . o
2 w ' f—fwm 2 % f—fwm
Taking the total differential of P with respect to & we have
P pu, - Pouy (2.20)
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P; = 2%® (8,0,; + 0,8,) + 2x? (0,¥, — 6, ¥,) (0¥, + 6,¥,; — (2.21)
— 0¥, — 8, ¥y) — 6, (1 + ¥ 4 W) — 20 (W, Wy -+ ¥, W) (i=1,2)
Reducing the coefficients R,, to the form

Ry = Q(— ) Uy, (m=Ei, nEk mon, i k=1,2) (2.22)

0 = gy (W2 (L + %) + G + w)']

with the aid of (2.3), (2.4) and (2.19) and making use of the relation result-
ing from (1.1) and (1.16) along wug= f(u,), namely

ulAli + uzAzi = ully;i + ugq’.gi =0 (i=1, 2) (223)
by virtue of (2.7) and (2.17) we obtain
dP Q wy'f —uy
=54 —4) /2 T )_f—f—ul <0 (2.24)

Since the signs of dp/’dg and grR/dg colclde, we have proved the fol-
lowing theorem.

Theoren 2.1 . If behind the front of a three-dimensional curvi-
linear normal detonation wave the gas flow belongs to the class of potential
double waves, and a certain fixed curve in the hodograph space corresponds
to the surface of the front, then for the system of equations describing
double waves this curve is a line indicating its parabollc character, whilst
behind the surface of the detonation front this system of equatlons is always
of hyperbollic type.

The Cauchy problem for the system (1.1), formulated along the curve
uz=7(u; ), 1in the given case is a proper one.

3. Let us consider the case of steady flow 1n the class of potential
double waves, when the shape of the surface of the strong discontinuity
remains unchanged., The system describing steady three-dimensional double
waves derived in [1] is obtalned by setting in (1.1)

= KW - M (K = const, M = corst) 3.1)

Then the equation for A in the system (1.1) can be dropped. Equations
(1.5) take the form
Ni= z; + V¥ (23— K?) (3.2)
and In the system of coordinates x,, xa; x,’ we shall have steady motion,
if we set x,’ = x;— kK¢t and in place of wu, introduce the veloclty uy'=u; — K

From the Cauchy data (1.19) and (1.20) for § and A on the curve (1.8)
we obtain

= L/ K = const (3.3)

and, consequently, the dependence (1.8) has the form
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u? -+ uy? = A* — L* / K* = @* = const (3.4)
{we shall assume that ¥ > ). Setting /uf-kuga r , the solution of the
Cauchy problem for the function ¥ will be sought -in the form ¥ = v{(r)

From the first equation of the system (1.1) we obtain for y the ordinary
equation

W' r + WO+ W) — ¥ (r + Y¥ — kPR = 0 (3.5)
1 . re Yz
e (mr M- --.i»), M=B —1L (3.6)

Conditions {1.24) for Equation (3.5) are given by the Cauchy initisl data
¥ (a) = L /K, ¥ {ay=L/Ka 3.7)

Accordingly, after specifying the value of the parameter K , the magni-
tude of which characterizes the inclination of the straight line generators
of the surface of the strong discontinuity to the axls of xy', the function
¥ 1s found as the solution of the Cauchy problem (3.7) for Equation {3.5)
and 1s completely determined, In the equation for the function X and in
the Cauchy initial data for it {1.18) and (1.25) let us pass to polar coordi-
nates i, = r cOSQ, Uy = I 8in ¢; We then obtain

X + (1 "“‘S (r)) Koo +1X;) = 0 (3.8

X—rX, =0, (D(X,. €0s P -—-X,s”: P X,sing+ X,,C—Oég) =0 forr=a
where (3.9)
s (r) = LR X K00 BY (3.10)

and the function & 1is arbitrary (when xa’= 0 can arbitrary specify the
shape of the director curve).

In the case of an ordinary shock wave &({g)< 1, Equation (3.8} in the
neighborhood of the curve r =a 18 of elliptic type and, generally speaking,
the Cauchy problem formulated in (3.9) is improper in the classical sense.
The given sitdation is analogous to the situation arlsing in the problem of
steady flow with shock waves past plane and axisymmetrlc bodles, when for a
given shape of shock wave the contour of the streamlined body 1s sought.

Let us determine the shape of the streamlined body in the case under con~
sideration. Let the surface of the body correspond in the u,, us plane to
the curve s = o{uy) (3.11)
and the relations (3.2) are the equations of this surface under the condi-
tions {3.11). The condition for absence of flow of gas through the surface
has the form

ngou = Dy (3.12)
where n, is the normal to the surface and Dy is the normal velocity of
motion of the streamlined surface. In exactly the ssme way as in Section 1,
we find that condition (3.12) 15 equivalent to the two relations



Compression shocks in three-dimensional flows 579

(Wi + ¥i0') 6, — (W1 + ¥pe0) 6, =0 3.13)
(X + X1507) 0, — (X + Xp00°) 6, =0 (3.14)

From (3.13), since 6 = a(r) and ¥ = ¥(r) , we obtain the result
0¥'r-? (u,— u0’) =0 (3.15)

Excluding from consideration the trivial case when the streamlined sur-
face 1s the plane {y; — u,0’= 0), and also the case Y’= O , corresponding
to a cylindrical surface, we conclude that the equation (3.5) must be inte-
grated, starting with r =g up to such 7 = d that ¢’(4d) = 0. From
(3.2) 1t follows that the streamlined surface, Just like the surface of the
sﬁrong discontinuity, is a ruled surface. Conditions (3.14) can be written
down in the form

0r 1 [(Xyy — Xpp0) 4y — (Xgp + Xpp0) uy]l =0 (3.16)

and when 8’(g) = O 1t 1s indeed satisfied, whilst the dependence (3.11)
has, accordingly, the form u,® + u,®= const .

We note that when X = () we obtain the solution of the problem of steady
flow past a circular cone, Moreover, if o 1s the angle included by the
cone corresponding to the shock wave, then sin §a =20 /x , and all the
required quantities depend only upon the argument Wx,? + x,2/ x, (see [7]).
The angle g 1included by the streamlined cone is found after calculation
of the solution of the Cauchy problem (3.7) from Equation (3.5) in the inter-
val [g, d) d > a (the shape of the shock wave is assumed known) from the
relation tan 48 = ¥'(d).

Accordingly, the function ¥ for the solution of problems of steady flow
past three-dimensional bodles in the class of potentlal double waves can be
taken from the corresponding self-similar problem of flow of a uniform super-
sonic stream past a circular cone. In the determination of the "distribu-
tion" function X » however, there remains the degree of arbitrariness noted
above.

From the properties of steady self-similar flow past a circular cone it
follows that YW« 0 when r & [a, d]. Hence, representing 1 — & with
the aid of (3.5) and (3.10) in the form

1 —s=—Vr/¥ (3.17)

we conclude that 1 — g > 0 and Equation (3.8) in the whole annulus r=g,
r=4d 1s of elliptic type.

Let us Ilnvestigate the singularities which can arise in passing from the
hodograph space to physical space. For this purpose, after transforming to
the polar coordinates r and ¢ 1in relations (3.2), ‘determining the flow
in the x,, xz, % ‘ space, let us calculate the Jacobian I =a(x,,x;)/2(r,p)
for fixed x;’.
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Making use of Equatlon (3.8} we obtain for I the expression
L 2N 1< X )2
I = g ()\r?_“‘?”x:}!f_’?(}&m%%} {318)
From the inequality v’'v¥’< O we conclude that [ < O and F vanishes
only under conditions

Xep — W 2y =0, Ko — r_ixzp =0 (319)

If the second eguation (3.19) corresponds to certain curves r = r{p) in
us under consideration, then the rela
mine, generally speaking, certain limit lines which c¢an, in this way, appear
in the flows under study.

2d e {2 A amd {8 10 Ass
tlons \3.2, and {3,19) deter-

Specifying initial conditions (3.9} not when x,’ = O , as has happened
until now, but with sufficiently large values of |x/| =¥ , from Expression
{3.18) for 1 and from the fact that for flow past a circular cone

T =¥'¥'%',
we find that the region of definitlon of the solution in physical space in
one of the directions along the x;-axis is unbounded.

The equations of the director curve in this case, if the form of the con-
ditions 1in (3.9) is retained, will have the form

2y = X, c0s ¢ — Xortsing — ¥'Ncosg

z, = X,sin@ + Xortcosg — PN sing

i.e. the shape of the section of the shock wave is cloge to a clrele, and
the flow 1s completely defined in the whole reglon between the shock wave
and the streamlined body for |z3") 2> N.

for r=2aqa (3.20)

The simplest examples of flow of the type under conslderation are easily
obtained in the following way. In the coefficlents of Eguation {3.8) tne
varlable o does not appear, and this permits separation of the varlables,
Setting X== F (r}<7 (), we obtain for F and 7 the equatlons

PAF s (4 sy (WF ) =0, (3.21)
" — Ay = 0, A == const (3.22)
Having taken, for example, the sclution of Eguation (3.8} in the form
X = ¢os 29F, {r), where F, is determined from Equation (3.21) whenh = — 4
ana aF'(a) — F(e) = 0, we obtain surfaces of the shock wave and the
streamlined body which are symmetric with respect to the planes x,= O and
xp= 0 , given by Eguations

¥ cos tpz‘;; for r=a, r=4d
sin 2¢ €S ¢ (3.23)
xy = F," cos 2 sin ¢ — 21!7,1—m&:-;w‘w—P — W' sin gz for reu, r=d

sin 2@ sin @
r

z, == Fy cos 2pcosp + 2F,
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In the case of specification of initial data when xJ =0 1t 1is necessary
in each actual solution to verify that X,, and X, 4 — 7-'1)(,:p do not vanish:
simultaneously. If both these expressions do not vanish simultaneously,then
in the neighborhood of the plane %3'= O 1t 1s indeed possible to pass
from the hodograph space to physical space.

Note 1 . Fourler's method of solution of the Cauchy problem for
Equation (3.8) can be effectively applied for construction of the flow behind
normal detonation waves when Equation (3.8) is of hyperbolic type.

Note 2. When |x3’| -~ for any initial data the shape of the
shock wave and the streamlined body approximates to the shape of a circular
cone, and the corresponding flow tends to flow past a circular cone.

Note 3 . The foregolng considerations allow us to formulate the
problem of flow past a body, the surface of which is the envelope of a family
of cones with vertices on a certain curve in the plane x,’= const and such
that all the generators of the cones have one and the same angle of inclina-
tion to the x,’-axls. Moreover, apparently, for certain speclal curves in
the plane x,’= const we can ootain "complete" flow, i1.e. without limiting
curves. The solutlon of thls problem is connected with finding the solution
of the Cauchy problem for the elliptic equation (3.8). Questions of the
existence of such solutlons are not considered in the present paper. We
notice that, instead of the Cauchy problem for Equation (3.8), we can solve
the nonlinear mixed problem in a nonsimply connected reglon with condition
(a) (3.9) when r = & and condition (bg {3.9) when r =4 (i.e. in the
annulus), when for x,’ = const we have specifled the shape of the section,
not of the shock wave, but of the streamlined body.
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